An Integrated Framework for Robust Human-Robot Interaction
نویسنده
چکیده
Developments in sensor technology and sensory input processing algorithms have enabled the use of mobile robots in real-world domains. As they are increasingly deployed to interact with humans in our homes and offices, robots need the ability to operate autonomously based on sensory cues and high-level feedback from non-expert human participants. Towards this objective, this chapter describes an integrated framework that jointly addresses the learning, adaptation and interaction challenges associated with robust human-robot interaction in real-world application domains. The novel probabilistic framework consists of: (a) a bootstrap learning algorithm that enables a robot to learn layered graphical models of environmental objects and adapt to unforeseen dynamic changes; (b) a hierarchical planning algorithm based on partially observable Markov decision processes (POMDPs) that enables the robot to reliably and efficiently tailor learning, sensing and processing to the task at hand; and (c) an augmented reinforcement learning algorithm that enables the robot to acquire limited high-level feedback from non-expert human participants, and merge human feedback with the information extracted from sensory cues. Instances of these algorithms are implemented and fully evaluated on mobile robots and in simulated domains using vision as the primary source of information in conjunction with range data and simplistic verbal inputs. Furthermore, a strategy is outlined to integrate these components to achieve robust human-robot interaction in real-world application domains. Key Terms: Bootstrap learning, Hierarchical POMDP, Augmented reinforcement learning, Autonomous robots, Human-robot interaction, Visual processing, Wheeled robots.
منابع مشابه
An Experimental Study on Blinking and Eye Movement Detection via EEG Signals for Human-Robot Interaction Purposes Based on a Spherical 2-DOF Parallel Robot
Blinking and eye movement are one of the most important abilities that most people have, even people with spinal cord problem. By using this ability these people could handle some of their activities such as moving their wheelchair without the help of others. One of the most important fields in Human-Robot Interaction is the development of artificial limbs working with brain signals. The purpos...
متن کاملRobust Hybrid Motion Force Control Algorithm for Robot Manipulators
In this paper we present a robust hybrid motion/force controller for rigid robot manipulators. The main contribution of this paper is that the proposed hybrid control system is able to accomplish motion objectives in free directions and force objectives in constrained directions under parametric uncertainty both in robot dynamics and stiffness constraint constant. Also, the given scheme is prov...
متن کاملAn Integrative Framework of Human Hand Gesture Segmentation for Human-Robot Interaction
This paper proposes a novel framework to segment hand gestures in RGB-D images captured by Kinect using human-like approaches for human-robot interaction. The goal is to reduce the error of Kinect sensing and consequently to improve the precision of hand gesture segmentation for robot NAO. The proposed framework consists of two main novel approaches. Firstly, the depth map and RGB image are ali...
متن کاملTowards a Uni ed Framework for Human-Humanoid Interaction
In order for a humanoid robot to be accepted in society and perform as an intelligent human assistant or companion, it must be equipped with a robust human-humanoid interaction (HHI) and task learning mechanisms. This paper describes our eeort to achieve a robust HHI mechanism based on a multi-agent architecture called the Intelligent Machine Architecture (IMA), two high-level agents called the...
متن کاملDiscrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator
This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012